Random posts
AI / MLJavaScriptLangChain.jsLLMNode.js
外部APIを利用したRAGをLangChain.jsのLCELだけで作る2 – 部分的なベクトル検索を採用する
LangChain.jsを使用して、RAGやテキスト生成機能を実装するシリーズが続いています。前回はWordPressのREST APIを使用して、RAGの検索部分に挑戦しました。今回はエラーが発生した記事本文や複数記事をLLMに渡す試みについて説明されています。MemoryVectorStoreを利用することで、記事の関連性の高い文章を取得し、記事の検索結果をさらに深掘りする方法も紹介されています。WordPressから取得した記事情報の検索結果をMemoryVectorStoreに保存する方法や、RAGのインデックスと検索処理を実装する手順も示されています。Cloudflare Workers AIを使用して生成された日本語の回答に関する内容や、AWS Lambdaのアプリケーションをアップデートする手順についても触れられています。LLMのトークン数上限に対処する方法や、回答を生成する際に必要な文章の抽出方法についても言及されています。ベクターインデックスを利用した検索についての知見が共有されています。
Okamoto Hidetaka

